

modello: T_WO_SOFTEST - Rev.1.0 del 17.09.10 nomefile: \Fileserver\archivio\CP Ingegneria\Ar-tec\Software_test validazione\programmi\Profili t2.doc

Codice: Profili

Release: 7.7 - 21 aprile 2009

1. Dati generali

1.1 Titolo

VERIFICA ALL'INSTABILITÀ DI UN'ASTA COMPRESSA

1.2 Computer file / data esecuzione test

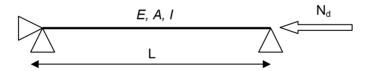
Il programma non consente il salvataggio dei dati / 07.12.2010

1.3 Descrizione

Asta in acciaio incernierata agli estremi, soggetta ad uno sforzo normale costante

1.4 Target

Rapporto domanda/capacità nei confronti dello stato limite ultimo di instabilità per aste compresse


1.5 Tipo di analisi

-

1.6 Unita di misura

kN

1.7 Geometria

1.8 Dimensioni

lunghezza della trave = 4.85m

1.9 Caso di carico

 $N_d=45 \text{ kN}$

1.10 Condizioni al contorno

cerniera ad entrambi gli estremi

1.11 Proprietà dei materiali

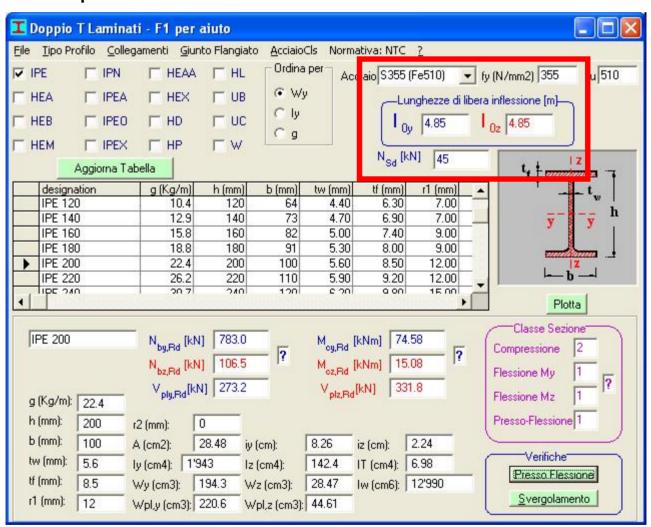
acciaio tipo S355

modello: T_WO_SOFTEST - Rev.1.0 del 17.09.10 nomefile: \\Fileserver\archivio\CP Ingegneria\Ar-tec\Software_test validazione\programmi\Profili 12.doc

Codice: **Profili**Release: 7.7 - 21 aprile 2009

1.12 Proprietà delle sezioni

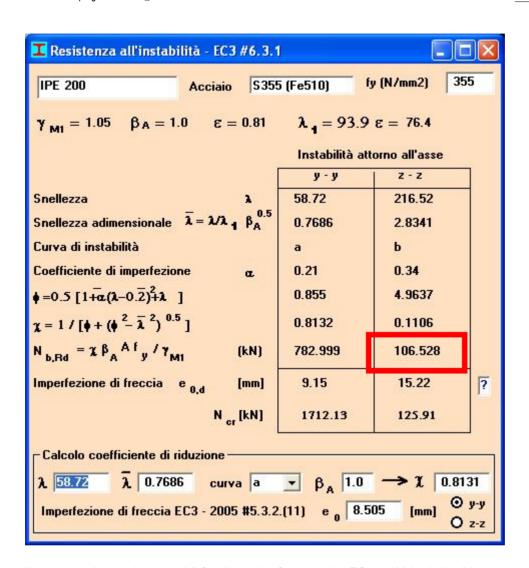
profilato tipo IPE200


1.13 Tipo di elemento finito utilizzato dal software

_

1.14 Metodo di comparazione della soluzione fornita dal software

Soluzione fornita dal software FINE Steel EC3 (demo version 4.0.7.26, 169 00 Praha 6 – Brevnov, Czech Republic)


2. Computer model

modello: T_WO_SOFTEST - Rev.1.0 del 17.09.10 nomefile: \\Fileserver\archivio\CP Ingegneria\Ar-tec\Software__test validazione\programmi\\Profili_t2.doc

Codice: Profili
Release: 7.7 - 21 aprile 2009

il rapporto domanda capacità fornito dal software vale; FS=45/106.53=0.422

3. Soluzione di confronto

Fin10 - Steel EC3 Demo [Untitled]
Compressed

Partial safety factors:

Analysis carried out according to undetermined National Applicational Document. Values of partial safety factors for steel structures: Sections classes 1,2,3: $Gama_M0 = 1.050$ Sections classes 4: $Gamma_M1 = 1.050$ Net sections: $Gamma_M2 = 1.250$

modello: T_WO_SOFTEST - Rev.1.0 del 17.09.10

nomefile: \\Fileserver\archivio\CP Ingegneria\Ar-tec\Software\ test

validazione\programmi\Profili t2.doc

Codice: **Profili**

Release:

7.7 - 21 aprile 2009

Input values

Member length: 4.850 m

Material: EN 10210-1 : S 355

Member cross-section: IPE 200

Buckling resistance on member:

${\tt Buckling}\ {\tt resistance}\ {\tt when}\ {\tt buckling}\ {\tt perpendicular}\ {\tt to}\ {\tt Z-axis}$

Number	Start pt.	End pt.	Length	Coeff.	of buck. le	ngth Buckling length
of sec.	[m]	[m]	for buckling	[m]	kz	Lcrz [m]
1	0.000	4.850	4.850		1.000	4.850

Buckling resistance when buckling perpendicular to Y-axis

Number	Start pt.	End pt.	Length	Coeff.	of buck.	length	Buckling	length
of sec.	[m]	[m]	for buckling	[m]	ky		Lcr	y [m]
1	0.000	4.850	4.850		1.000		4.850	

Buckling resistance when buckling due to torsion

Number	Start pt.	End pt.	Length	Coeff.	of buck. length	Buckling length
of sec.	[m]	[m]	for buckling	[m]	kw	LcrOmega [m]
1	0.000	4.850	4.850		1.000	4.850

Lateral-torsional buckling on member:

Lateral-torsional buckling due to moment My

Number	Start pt.	End pt.	1z1	Moment	area	Position	of	loading
of sec.	[m]	[m]	[m]	figure	ratio ps:	i zP		
1	0.000	4.850	4.850 8	Shape No.1	_	_		

Lateral-torsional buckling due to moment Mz

Number	Start pt.	End pt.	ly1	Moment	area		Position	of	loading
of sec.	[m]	[m]	[m]	figure	ratio	psi	yР		
1	0.000	4.850 Not	assigned	Not assigne	ed	_		-	-

Verification results

Crucial load case: Load case 1

Critical section of the member: X = 0.000 m; Is satisfied

Verification of the member slenderness:

```
member slenderness: 216.899
```

hazardous limit of slenderness: 250.000

Slenderness greater than 180 could be hazardous to some types of constructions The member is satisfied

Member critical cut - cross-section 1

Verification results

```
Results for load case: Load case 1
```

Cross-section class: 2

Internal forces: N = -45.000 kN; My = 0.000 kNm; Mz = 0.000 kNm

modello: T_WO_SOFTEST - Rev.1.0 del 17.09.10 nomefile: \Fileserver\archivio\CP Ingegneria\Ar-tec\Software_test

validazione\programmi\Profili_t2.doc

Codice: Profili

Release: 7.7 - 21 aprile 2009

Verification of the most unfavorable combination of buckling and bending:

Resistances: $N_R = -106.206 \text{ kN}$

| 0.424 + 0.000 + 0.000 | < 1 | Is satisfied

Verification of the member slenderness:

member slenderness: 216.899

hazardous limit of slenderness: 250.000

Slenderness greater than 180 could be hazardous to some types of constructions

The cross-section is satisfied

4. Comparazione dei risultati di Target

entità	computer model	soluzione alternativa	Δ%	
rapporto domanda/capacità	0.422 kN	0.424 kN	-0.5%	

Bibliografia

D.M. 14.01.08 - Norme tecniche per le costruzioni

UNI EN 1993-1-1 – agosto 05 - Eurocodice 3 – Progettazione delle strutture di acciaio – Parte 1-1: Regole generali e regole per gli edifici.