

Fenomeni di caduta massi ed energia dissipabile dalle barriere paramassi poco deformabili

Udine, 26 marzo 2004

Alessandro Coccolo

CP Ingegneria

Gemona del Friuli (UD)

PROGRAMMA

Con il patrocinio di: ASSOCIAZIONE DEGLI INGEGNERI DELLA PROVINCIA DI UDINE

E la partecipazione di: ORDINE DEI GEOLOGI DELLA REGIONE FRIULI E VENEZIA GIULIA

PREVENZIONE DEL RISCHIO IN AMBIENTI MONTANI

Udine 26 marzo 2004

ore 14,30

UNIVERSITA' DEGLI STUDI DI UDINE "Palazzo Tomadini – Sala Tomadini" via Tomadini, 30 33100 Udine 14.30 Registrazione partecipanti

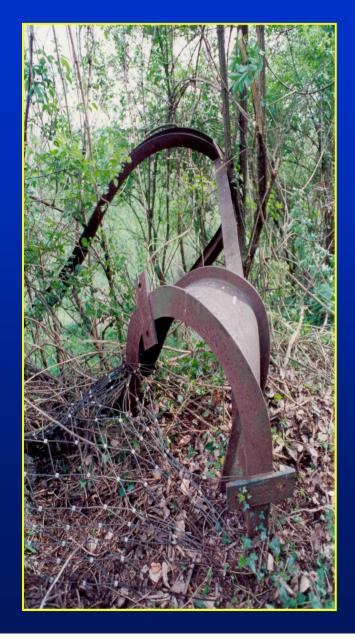
15.00 Saluto e presentazione dell'iniziativa Ing. Marino Donada Presidente dell'Associazione degli Ingegneri della provincia di Udine

15.10 Saluto e presentazione dell'iniziativa Ing. Roberto Meriggi Commissione Geotecnica Ordine Ingeaneri provincia di Udine

15.20 Introduzione: caduta massi, aspetti teorici e applicativi Ing. **Alessandro Coccolo** Libero Professionista

15.40 Associazione ACAI di Confindustria Sezione "Strutture paramassi e fermaneve certiciati" Dott. Geol. **Antonio Paiola** Coordinatore tecnico della Sezione

16.00 Barriere paramassi certificate secondo normativa Ing. **Thomas Frenez** GEOBRUGG Italia 16.30 Coffee break


16.45 Barriere di contenimento debris flow Ing. **Thomas Frenez** GEOBRUGG Italia

17.15 Il sistema TECCO ® - Consolidamento attivo e diffuso di versanti Dott. Geol. Guido Guasti GEOBRUGG Italia

17.45 Discussione

18.10 Conclusione

Sommario:

1) Il concetto di Rischio Totale;

2) Il fenomeno delle frane in roccia;

3) Quantificazione della energia dissipabile da barriere poco deformabili;

II Rischio Totale

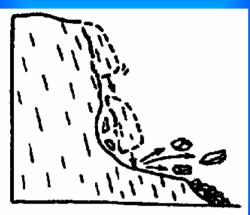
R≠H

 $R(E,I)=H(I)\otimes V(I,E)\otimes W(E)$

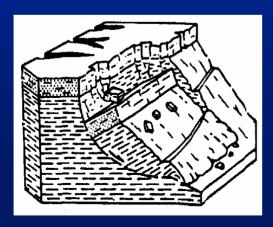
- PERICOLOSITA' H: è la <u>probabilità</u> che un fenomeno naturale di una data intensità I si verifichi in un dato periodo di tempo ed in una data area;
- VULNERABILITA' V: è grado di perdita (0-1) prodotto su uno o più elementi a causa del verificarsi di un fenomeno di una data intensità. E' funzione dell'intensità I del fenomeno e della tipologia dell'elemento a rischio E;
- VALORE ESPOSTO W: rappresenta il valore economico o il numero di unità relative ad ognuno degli elementi a rischio in una data area, è funzione della tipologia dell'elemento a rischio E.

[Report of consultative meeting of experts on the statistical study of natural hazard and their consequences, UNESCO, 1972]

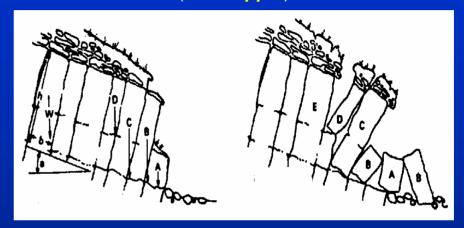
RISCHIO TOTALE R: è il valore atteso delle perdite umane, dei feriti, dei danni alle proprietà e delle perturbazioni alle attività economiche dovuti al verificarsi di un particolare fenomeno naturale di una data intensità

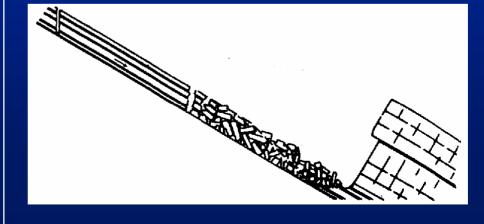

Progettazione delle opere paramassi

- NON CORRISPONDE AL DIMENSIONAMENTO STRUTTURALE IN SENSO STRETTO DELLE OPERE DI DIFESA (approccio deterministico)
- E' UN PROCESSO ARTICOLATO DI RIDUZIONE DEL RISCHIO DA CADUTA MASSI IN PARTI DEL TERRITORIO MONTANO VARIAMENTE ANTROPIZZATE AD UN VALORE RITENUTO SOCIALMENTE ACCETTABILE (approccio probabilistico RELIABILITY!!!)


Classificazione di Varnes abbreviata (1978)

esempi riferiti a frane in roccia


Crollo di roccia (rock fall)


Scivolamento rotazionale di roccia (*rock slump*)

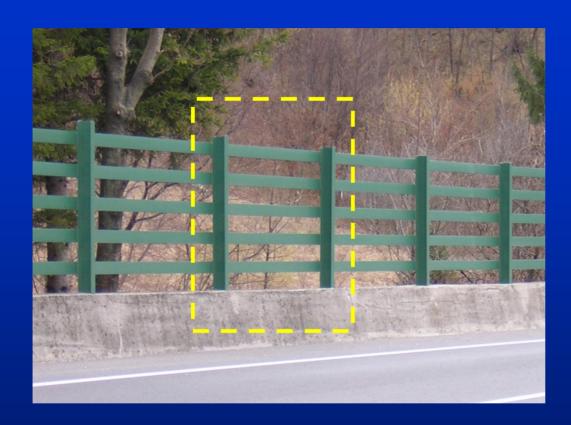
Ribaltamento di roccia (rock topple)

Scivolamento traslazionale di roccia (rock slide)

II fenomeno Cicli di gelo-disgelo Escursioni termiche **DEGRADAZIONE** ATMOSFERICA DEI VERSANTI Erosione eolica **CAUSE** Ruscellamenti superficiali **CARICHI DINAMICI DEFINIZIONE:** Eventi sismici Massi isolati o volumi rocciosi che, a seguito Riprofilature MODIFICAZIONE DELLO STATO di condizioni di **TENSIONALE DEL PENDIO** equilibrio instabile, si Sovraccarichi staccano da un ripido pendio e cadono Esplosioni liberamente sulle superfici sottostanti, rotolando. **PURO SCIVOLAMENTO** rimbalzando, • presente in pratica solo nelle fasi iniziali del moto: scompaginandosi in · interessa blocchi di grandi dimensioni. frammenti di varia pezzatura **PURO ROTOLAMENTO** • presente in pratica solo nelle fasi terminali del moto; • interessa blocchi forma regolare; **PROPAGAZIONE** TRAIETTORIE AEREE "impatto-rimbalzo"+SPIN! Caratteristiche dell'impatto

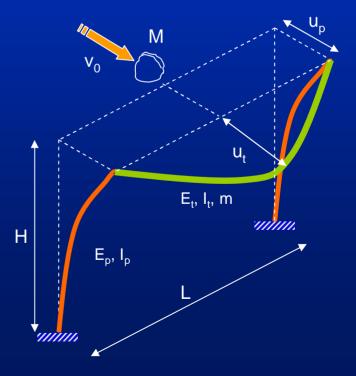
Origine del moto

- scoppio da impatto basale;
- brusca variazione della superficie topografica durante il rotolamento o il scivolamento.

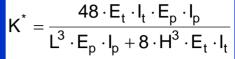

- tende a scomparire quando le irregolarità del pendio divengono comparabili con la dimensione dei massi

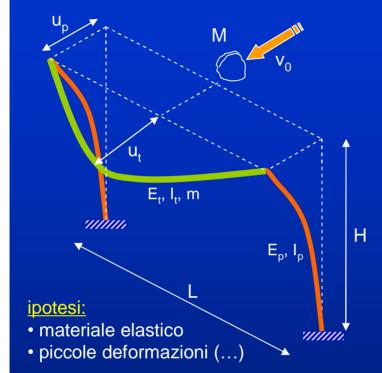
FORZE DIPENDENTI DA:

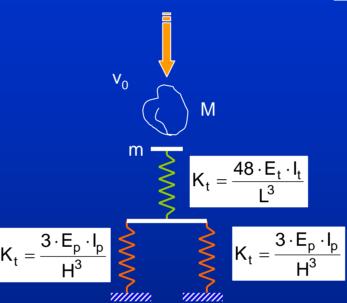
- · velocità angolare e lineare del blocco;
- angolo di incidenza impatto:
- massa e forma del blocco;
- geometria del contatto blocco-versante.


VERIFICA DI BARRIERE PARAMASSI RIGIDE

- Modello elastico lineare -


LA SITUAZIONE REALE

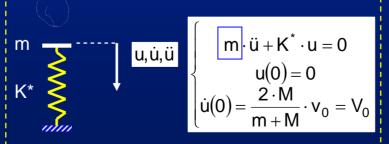

IL MODELLO DI CALCOLO: si isola una campata e si trascura il contributo in rigidezza delle campate contigue



VERIFICA DI BARRIERE PARAMASSI RIGIDE

- Modello elastico lineare -





URTO ANELASTICO

URTO ELASTICO

$$\omega = \sqrt{K^*/(M+m;m)}$$

$$u(t) = \frac{V_0}{\omega} \cdot \sin(\omega \cdot t)$$

$$u_{max} = V_0/\omega$$

$$F_{max} = K^* \cdot u_{max}$$

VERIFICA DI BARRIERE PARAMASSI RIGIDE - Modello elastico lineare -

	BARRIERA IN ACCIAIO				BARRIERA IN LEGNO E ACCIAIO						
TRAVERSO				RITTO			TRAVERSO		RITTO		
	U240			IPE220		TON	IDONE ⊕2	5cm		IPE220	
L=	5	m	H=	2	m	L=	5	m	H=	2	m
lt(y -y)=	0.00000274	m ⁴	lp(x-x)=	0.00002772	m ⁴	lt(y-y)= (0.00019174	8 m ⁴	lp(x-x)=	0.00002772	m ⁴
Wt(y-y)=	0.0000395	m³	Wp(x-x)=	0.000252	m³	Wt(y-y)= (0.00153398	1 m³	Wp(x-x)=	0.000252	m^3
Et=	206000000	kPa	Ep=	206000000	kPa	Et=	12500000	kPa	Ep=	206000000	kPa
p=	332	N/m	Kp=3·Ep·lp/H ⁶ =	2141370	N/m	p=	340	N/m	Kp=3·Ep·lp/H³=	2141370	N/m
Gt=p·L=	1660	N	RIGIDE	ZZA EQUIVA	LENTE	Gt=p·L=	1700	N	RIGIDE	ZZA EQUIVA	LENTE
m=Gt/g=	169	kg	$K^*(Kt,Kp)=$	206304	N/m	m=Gt/g=	173	kg	K*(Kt, Kp)=	757580	N/m
Kt=48·Et·It/L³=	216745	N/m				Kt=48·Et·lt/L³=	920388	N/m			
	CARATTERISTICHE DEL CORPO IMPATTANTE					CARATT	ERISTICHI	E DEL CORPO IMP	ATTANTE		
	M=		18	kg			M	=	12	kg	
	v 0=		4.0	m/s			v0	_	4.0		
										m/s	
	T=			I.,						m/s	
	T=		900	J			T		600	m/s J	
IMPA	T=		900	J ATTO ELASI	псо	IMPAT		=	600	m/s J 'ATTO ELAS '	псо
IMPA` V0=			900	J	riCO m/s	IMPAT V0=	Т	=	600	J	TICO m/s
	TTO ANELAS	STICO	900 IMP	ATTO ELASI			TO ANELA	STICO	600 IMP	J ATTO ELAS	
V0=	TTO ANELAS 0.96	STICO m/s	900 IMP/ V0=	ATTO ELAST 1.92	m/s	V0=	T TO ANELA 0.65	STICO m/s	600 IMP V0=	J ATTO ELAS 1.30	m/s
V0= ω ² =	TTO ANELAS 0.96 1102	STICO m/s (rad/s) ²	900 IMP V0= ω ²⁼	ATTO ELAST 1.92 1219	m/s (rad/s) ²	V0= ω ² =	TO ANELA 0.65 4089	stico m/s (rad/s) ²	600 IMP V0= ω ² =	J ATTO ELAS 1.30 4372	m/s (rad/s)
$V0= \\ \omega^{2}= \\ u=V0/\omega=$	0.96 1102 0.0290	STICO m/s (rad/s) ² m	900 IMPA V0= ω ² = u=V0/ω=	ATTO ELAST 1.92 1219 0.0551	m/s (rad/s) ² m	$V0=$ $\omega^{2}=$ $u=V0/_{\omega}=$	TO ANELA 0.65 4089 0.0101	sSTICO m/s (rad/s) ² m	1MP V0= ω²= u=V0/ω=	J ATTO ELAS 1.30 4372 0.0196	m/s (rad/s) m
V0= ω^2 = u=V0/ ω = F=K*·u=	0.96 1102 0.0290 5975	STICO m/s (rad/s) ² m	900 IMP V0= ω ² = u=V0/ω= F=K* u=	1.92 1219 0.0551 11361	m/s (rad/s) ² m N	V0= ω ² = u=V0/ _ω = F=K* ·u=	TO ANELA 0.65 4089 0.0101 7673	sSTICO m/s (rad/s) ² m N	IMP V0= ω²= u=V0/ω= F=K*·u=	J ATTO ELAS 1.30 4372 0.0196 14841	m/s (rad/s) m N
$V0=\\ \omega^2=\\ u=V0/\omega=\\ F=K^*\cdot u=\\ Ft=$	0.96 1102 0.0290 5975 5975	STICO m/s (rad/s) ² m N	900 IMP V0= ω²= u=V0/ω= F=K* u= Ft=	1.92 1.219 0.0551 11361 11361	m/s (rad/s) ² m N	V0= ω²= u=V0/ω= F=K* ·u= Ft=	TO ANELA 0.65 4089 0.0101 7673 7673	sSTICO m/s (rad/s) ² m N	1MP V0= ω²= u=V0/ω= F=K*·u= Ft=	J 1.30 4372 0.0196 14841 14841	m/s (rad/s) m N
$V0=$ $\omega^{2}=$ $u=V0/\omega=$ $F=K^{*}u=$ $Ft=$ $Fp=F/2=$	0.96 1102 0.0290 5975 5975 2988	STICO m/s (rad/s)² m N N	900 IMP V0= ω²= u=V0/ω= F=K* u= Ft= Fp=F/2=	1.92 1219 0.0551 11361 11361 5681	m/s (rad/s) ² m N N	V0= ω²= u=V0/ω= F=K*·u= Ft= Fp=F/2=	TO ANELA 0.65 4089 0.0101 7673 7673 3837	sSTICO m/s (rad/s) ² m N N	IMP V0= ω²= u=V0/ω= F=K*·u= Ft= Fp=F/2=	J 2ATTO ELAS 1.30 4372 0.0196 14841 14841 7420	m/s (rad/s) m N N
$V0=$ $\omega^{2}=$ $u=V0/\omega=$ $F=K^{*}\cdot u=$ $Ft=$ $Fp=F/2=$ $ut=Ft/Kt=$	0.96 1102 0.0290 5975 5975 2988 0.0276	sTICO m/s (rad/s)² m N N N	900 IMP V0= ω²= u=V0/ω= F=K* u= Ft= Fp=F/2= ut=Ft/Kt=	1.92 1.219 0.0551 11361 11361 5681 0.0524	m/s (rad/s) ² m N N N m	V0= ω²= u=V0/ω= F=K*·u= Ft= Fp=F/2= ut=Ft/Kt=	TO ANELA 0.65 4089 0.0101 7673 7673 3837 0.0083	stico m/s (rad/s) ² m N N N	IMP V0= ω²= u=V0/ω= F=K*·u= Ft= Fp=F/2= ut=Ft/Kt=	1.30 4372 0.0196 14841 14841 7420 0.0161	m/s (rad/s) m N N N

MPa

MPa

ct=Mt/Wt=

 $_{\odot}$ p=Mp/Wp=

MPa

MPa

360

45

ct=Mt/Wt=

 $\sigma p = Mp/Wp =$

MPa

MPa

ct=Mt/Wt=

 $_{\odot}$ p=Mp/Wp=

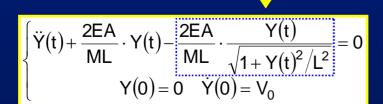
MPa

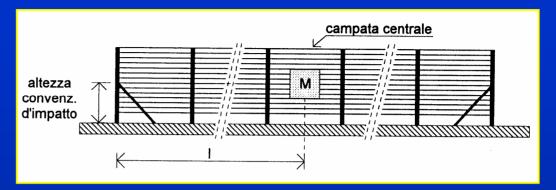
MPa

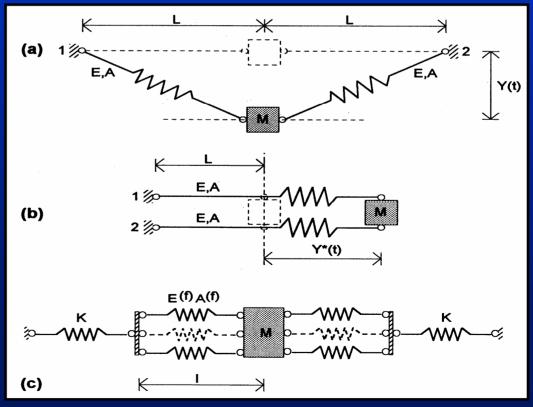
12


59

 $_{\odot}$ p=Mp/Wp=



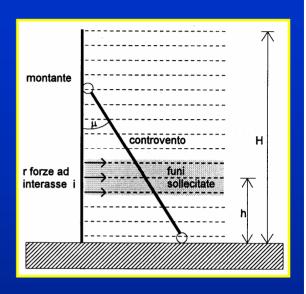

- Modello elastico linearizzato (Paronuzzi e Coccolo, 1998) -


ipotesi:

- sistema GL1 formato da molle tra loro in parallelo (funi soggette ad impatto) a loro volta in serie con molle schematizzanti le testate;
- funi e profilati in acciaio a comportamento lineare;
- urto anelastico di una massa M a velocità iniziale V0, contatto fino a T/2 sulla campata centrale di un insieme dispari di campate;
- assenza di attrito nei passacavi.

IL PROBLEMA E' GEOMETRICAMENTE NON LINEARE! (moto fuori piano)

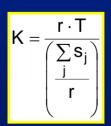
- Modello elastico linearizzato (Paronuzzi e Coccolo, 1998) -


CONSIDERAZIONI:

 AI FINI DELLA DETERMINAZIONE **DEL MASSIMO SFORZO NELLE FUNI NON E' NECESSARIO CONOSCERE LO SVILUPPO** GEOMETRICO E TEMPORALE DEL MOTO: F' SUFFICIENTE EGUAGLIARE L'ENERGIA CINETICA POSSEDUTA DALLA MASSA IMPATTANTE ALL'ENERGIA POTENZIALE ELASTICA DEL SISTEMA FUNI+TESTATE ALL'ISTANTE DEL MASSIMO ALLUNGAMENTO (T/2) IN **DEFINITIVA:**

$$\begin{cases} \ddot{Y}(t) + \frac{2EA}{ML} \cdot Y(t) - \frac{2EA}{ML} \cdot \frac{Y(t)}{\sqrt{1 + Y(t)^2/L^2}} = 0 \\ Y(0) = 0 \quad \dot{Y}(0) = V_0 \end{cases}$$

$$\begin{cases} \ddot{Y}^{*}(t) + \omega^{2} \cdot Y^{*}(t) = 0 \quad \omega^{2} = \frac{2EA}{ML} \\ Y^{*}(0) = 0 \quad \dot{Y}^{*}(0) = V_{0} \end{cases}$$



PROCEDURA DI CALCOLO:

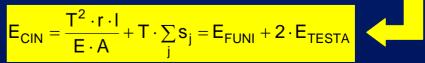
$$\{\!(M,V_0)\!\rightarrow\!r\}$$

$$\{(T,h,r) \rightarrow M_Y\}$$

$$s_j (j = 1,...r)$$

$$\hat{K} = \frac{r \cdot E \cdot A}{I}$$

$$\overline{K} = \frac{K \cdot \hat{K}}{K + \hat{K}}$$

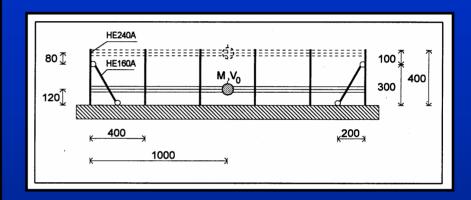


$$\begin{cases} \ddot{Y}(t) + \left(\frac{2 \cdot \overline{K}}{M}\right) \cdot Y = 0 \\ Y(0) = 0 \quad \dot{Y}(0) = V_0 \end{cases}$$

$$Y_{MAX} \left(\frac{T}{2} \right) = \frac{V_0}{\sqrt{\frac{2 \cdot \overline{K}}{M}}} = \sqrt{\frac{E_{CIN}}{\overline{K}}}$$

$$\begin{cases} \ddot{Y}(t) + \left(\frac{2 \cdot \overline{K}}{M}\right) \cdot Y = 0 \\ Y(0) = 0 \quad \dot{Y}(0) = V_0 \end{cases} F_{MAX} \left(\frac{T}{2}\right) = \overline{K} \cdot Y_{MAX} = \sqrt{E_{CIN} \cdot \overline{K}} \\ T = F_{MAX} / r \end{cases}$$

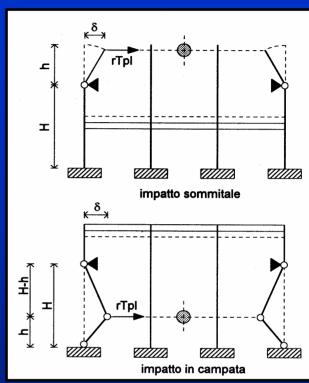
$$T = F_{MAX} / r$$



- Modello elastico linearizzato (Paronuzzi e Coccolo, 1998) -

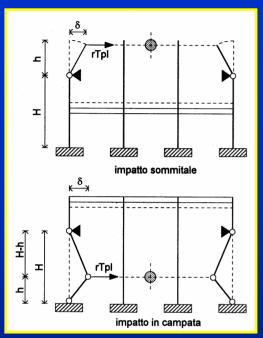
CARATTERISTICHE GENERALI DELLA BARRIERA				
interasse tra i montanti:	400 cm			
semilunghezza della barriera:	I=1000 cm			
altezza dei montanti:	400 cm			
CARATTERISTICHE DEI MONTANTI D'ESTREMITÀ				
lunghezza campata:	H = 300 cm			
tipo:	HE240A, Fe360, f _y =23500 N/cm ² , W _X =675 cm ³			
momento al limite elastico:	M ^(S) =f _y W _X =15.800.000 Ncm			
modulo di resistenza plastico:	W _{pl} ≅ 707 cm ³			
momento "fully plastic":	M _{pl} = f _y W _{pl} = 16.500.000 Ncm			
CARATTERISTICHE DEI CONTROVENTI				
angolo tra montante e controvento:	μ = arctg (200/300) = 33° 69			
tipo:	HE160A			
sezione trasversale:	A ^(c) = 38.8 cm ²			
lunghezza:	c = L/cosµ = 361 cm			
modulo elastico:	E ^(C) = 21.000.000 N/cm ²			
momento d'inerzia minimo:	$J^{(C)} = 616 \text{ cm}^4$			
CARATTERISTICHE DELLE FUNI				
tipo:	6(6+1)+AT, φ=22 mm, A ^(f) =1.78 cm ²			
carico di rottura:	T _r =270 000 N			
efficienza dell'attacco:	α=0.82 (morsetti a cavallotto)			
carico di esercizio:	T _{adm} =0.7αT _r ≅155 000 N			
modulo elastico:	E ^(f) =12.000.000 N/cm ²			
CARATTERISTICHE DELL'IMPATTO				
numero di funi interessate:	r = 3			
altezza d'impatto sommitale:	h = 80 cm			
altezza d'impatto in campata:	h = 120 cm			
spostamento trasversale ipotizzato:	δ = 10 cm			

ESEMPIO DI CALCOLO



IMPATTO I	IN CAMPATA	IMPATTO :	SOMMITALE
T(yield)=	90000 N	T(yield)=	65000 N
r=	3	r=	3
l=	10000 mm	l=	10000 mm
s(100)=	2.676 mm	s(60)=	11.973 mm
s(120)=	3.228 mm	s(80)=	14.654 mm
s(140)=	3.558 mm	s(100)=	17.371 mm
E(funi)=	120000 MPa	E(funi)=	120000 MPa
A=	178 mm2	A=	178 mm2
K(testa)=	85605.58 N/mm	K(testa)=	13296.06 N/mm
K(funi)=	6408 N/mm	K(funi)=	6408 N/mm
K(equiv)=	5961.7347 N/mm	K(equiv)=	4324.04 N/mm
Ecin=	12228 J	Ecin=	8794 J

VERIFICA DI BARRIERE PARAMASSI A FUNI - Modello plastico -


<u>ipotesi:</u>

- carico trasmesso dalle r funi, pari a r-Tpl concentrato a quota h;
- carico Tpl responsabile del raggiungimento del momento "fully plastic" sul montante (<Tadm funi !!);
- spostamento del punto δ di applicazione del carico di ordine di grandezza decimetrico;
- appoggio offerto dal controvento alla trave fisso (quindi necessaria anche una sua verifica all'instabilità);
- stima della energia dissipabile nelle cerniere plastiche dei cinematismi attraverso il PLV, eguagliando il lavoro compiuto nelle cerniere plastiche al lavoro prodotto dallo spostamento δ del punto di applicazione di r·Tpl

VERIFICA DI BARRIERE PARAMASSI A FUNI - Modello plastico -

1) attivazione cinematismo:

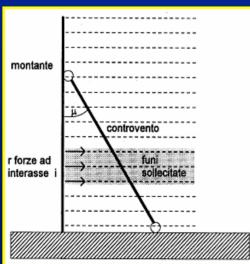
2) energia dissipabile:

3) verifica stabilità:

IMPATTO SOMMITALE

$$r \cdot T_{pl} = \frac{M_{pl}}{h}$$

$$E_{pl} = 2 \cdot \frac{M_{pl}}{h} \cdot \delta$$

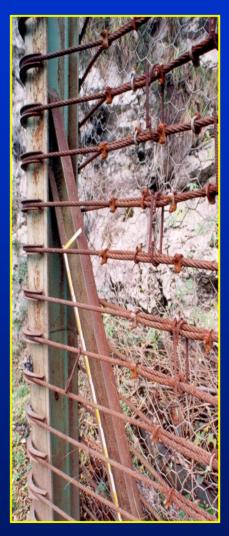

$$\frac{\mathsf{M}_{\mathsf{pl}}}{\mathsf{h} \cdot \mathsf{sin} \, \mu} < \frac{\pi^2 \cdot \mathsf{E}^{(\mathsf{c})} \cdot \mathsf{I}^{(\mathsf{c})}}{\left(\mathsf{H}/\mathsf{cos} \, \mu\right)^2}$$

IMPATTO IN CAMPATA

$$\mathbf{r} \cdot \mathsf{T}_{\mathsf{pl}} = \mathsf{M}_{\mathsf{pl}} \cdot \frac{2 \cdot \mathsf{H} - \mathsf{h}}{\mathsf{H} \cdot \mathsf{h} - \mathsf{h}^2}$$

$$\mathsf{E}_{\mathsf{pl}} = 2 \cdot \mathsf{M}_{\mathsf{pl}} \cdot \frac{2 \cdot \mathsf{H} - \mathsf{h}}{\mathsf{H} \cdot \mathsf{h} - \mathsf{h}^2} \cdot \delta$$

$$\frac{\mathsf{M}_{\mathsf{pl}}}{(\mathsf{H}-\mathsf{h}) \cdot \sin \mu} < \frac{\pi^2 \cdot \mathsf{E}^{(\mathsf{c})} \cdot \mathsf{I}^{(\mathsf{c})}}{(\mathsf{H}/\cos \mu)^2}$$


Esempio di calcolo

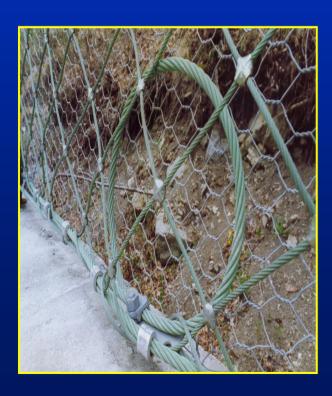
IMPATTO	IN CAMPATA	IMPATTC	SOMMITALE
H=	3 m	H=	m
h=	1.2 m	h=	0.8 m
Mpl=	165 kNm	Mpl=	165 kNm
δ=	0.15 m	δ=	0.15 m
E(co)	210000 MPa	E(co)	210000 MPa
I(co)	616 cm/4	l(co)	616 cm/4
μ=	33.69 °	μ=	33.69 °
N=	165 kN	P=	372 kN
Ncrit=	982 kN	Pcrit=	982 kN
Tadm=	155 kN	Tadm=	155 kN
Tpl=	122 kN	Tpl=	68.75 kN
r=	3	r=	3
Epl=	110000 J	Epl=	61875 J

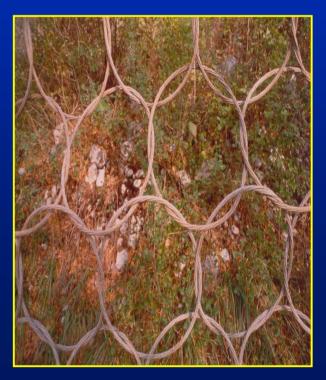
BARRIERE RIGIDE

BARRIERE A FUNI

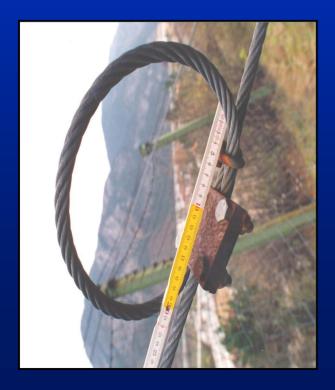
 $E=10^2 \div 10^3 J$ $E=10^4 \div 10^5 J$

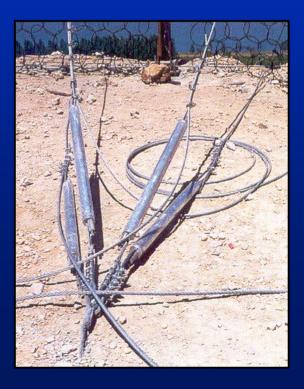
CASO REALE "SOFT!"


volume	V=	0.5 m^3
raggio	R=	0.5 m
diametro	D=	1.0 m
peso specifico	γ=	26 kN/m^3
peso	W=	13000 N
massa	M=W/g=	1300 kg
velocità trasl. baric.	V=	10 m/s
energia traslazion.	Etrasl=(1/2)·Mv^2=	65 kJ
frequenza	f=	4 Hz
velocità angolare	$\omega=2\pi f$	25.132741 rad/s
momento inerzia	$I=(2/5)\cdot MR^2=$	126.06396 kg·m ^ 2
energia rotazionale	Erot=(1/2)·lω⁄2=	39.814445 kJ
energia d'impatto	Etot=EtrasI+Erot=	104.8 kJ

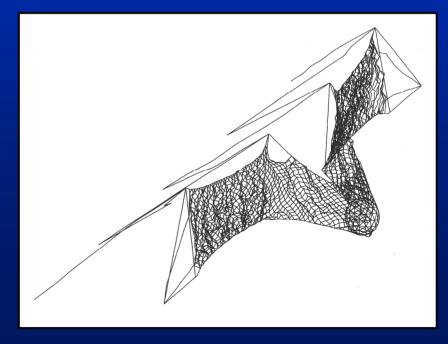

LE BARRIERE A BASSA DEFORMABILITA' NON SONO IN GRADO DI INCASSARE GLI INPUT ENERGETICI PRODOTTI DALLA GRANDE MAGGIORANZA DEI CROLLI LITOIDI!

quindi c'è bisogno di:


1) sostituire gli elementi strutturali monodimensionali tipo "<u>trave</u>" o "<u>filo</u>" con elementi bidimensionali tipo "<u>rete</u>", massimizzando l'energia potenziale elastica accumulabile nel sistema.



2) inserire nel sistema "punti di dissipazione concentrata" (\underline{freni}) in grado di convertire l'input energetico in attrito cinetico tra parti metalliche a mutuo contatto (lavoro di dissipazione \rightarrow calore).



3) comprendere che il fenomeno dinamico di interazione bloccobarriera si sviluppa nel campo degli spostamenti FINITI e non infinitesimi, pertanto il dimensionamento strutturale DEVE fare riferimento a <u>prove sperimentali in vera grandezza</u>, assistite ed integrate da analisi strutturali ad elementi finiti.

